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Abstract

A digital image processing technique is used for measurement of centroid coordinates of fibers with forthcoming
estimation of statistical parameters and functions describing the stochastic structure of laminated fiber composites.
Comparative statistical analysis of the experimentally measured and numerically simulated fiber distributions are
performed. We consider a linearly elastic composite medium, which consists of a homogeneous matrix containing a
statistically homogeneous set of ellipsoidal inclusions. The multiparticle effective field method (MEFM) [Appl. Mech.
Rev. 54 (2001) 1] based on the theory of functions of random variables and Green’s functions is used to demonstrate the
dependence of effective elastic moduli of fiber reinforced composites on the fiber radial distribution functions as esti-
mated from measured experimental data as well as from the ensembles generated by the proposed method. The MEFM
is applied for the estimations of second statistical moments of stresses in both the constituents and the interfaces be-
tween the matrix and fibers. These estimations are used in turn for the prediction of the effective envelope for failure
initiation. The dependence of the effective failure envelope on the elastic, geometrical, and failure parameters of the
constituents and the interphase matrix/fibers are analyzed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

We consider a linearly elastic composite medium which consists of a homogeneous matrix containing a
statistically homogeneous set of elliptical fibers subjected to homogeneous remote loading. The prediction of
the behavior of composite materials by the use of mechanical properties of the constituents and their
microstructure is a primary problem of micromechanics which can ultimately lead to the estimation of stress
fields in the constituents. The quantitative description of the microtopology of heterogeneous media, such as
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fiber composite materials, is crucial in the prediction of overall mechanical and physical properties of these
materials. For example, many studies have shown that both tensile ductility and fracture properties of multi-
phase composite materials are strongly affected by the spatial heterogeneity of the reinforcing phases (see for
references e.g. Buryachenko, 2001). Even after many years of comprehensive study by extremely laborious
direct measurements and empirical relations, the effect of the structure of microinhomogeneous materials
and their influence on the mechanical properties of composites are not completely understood.

Since the overall properties of composite materials are sensitive to the details of the microstructure, the
geometrical basis for modeling actual microstructures is needed. Digital image analysis is available for
estimating descriptors of the spatial arrangement of microstructural features observed in a cross-section of
materials (see e.g. Berryman, 1985). Space Dirichlet tessellations subdividing an Euclidian space into n-
dimensional bounded convex polytopes (polygons in 2D case) are widely used to characterize the spatial
distribution, size, and shape of a filled phase (see e.g. Ghosh and Mukhopadhyay, 1991) providing a natural
and unique approach for defining a particle’s neighbors and neighborhood. The Dirichlet tessellation of the
two dimensional domain w yields a network of convex Voronoi polygons each containing a single inclusion
with the center x; (i = 1,...,n). The interior of the Voronoi cell associated with the point x; is the region
wy={x ew:|x—x;| <|x—x;|,Vj#i} that is the neighborhood of x;. The tessellation is constructed by
plotting lines to the centers of all nearby particles and then constructing perpendicular bisecting planes to
those lines. Green and Sibson (1977) have proposed the algorithm generating Voronoi polygons for n
points by computing in O(nlogn) time by tracing boundary adjustments, as a new polygon is fitted into a
previously generated set. Ghosh et al. (1997) have developed a material based Voronoi cell method for
directly treating multiple phase Voronoi polygons as elements in a finite element model for elastic and
thermoelastoplastic problems. They suggested a modification to the standard tessellation procedure that
protects against the situation when neighboring fibers are substantially different in size and are closely
spaced, leading to polygons which do not completely envelop their corresponding fibers and may instead
“cut” though the fibers. Since each Voronoi cell contains a single particle surrounded by matrix, the Di-
richlet tessellation can be used for describing the statistical nature of the structure in the form of the fre-
quency distribution of the ratio of particle-to-cell volume which is also a measure of particle clustering (see
e.g. Bhattacharyya and Lagoudas, 2000).

A most common method of modeling these types of structures is to use the Monte Carlo (MC) simu-
lation to generate a random distribution of inclusions followed by a finite element analysis (FEA) of
periodically distributed mesocells containing a reasonably large number of inclusions. The usual short-
comings of the MC simulation are the prohibitive computer costs for a reasonably large number of
inclusions in the mesocells. This computational cost becomes an irresistible obstacle especially for esti-
mation of the first and second statistical moments of stresses in the constituents in the local and, especially,
nonlocal problems (such estimations are absent in the case of the FEA and available for semi analytical
methods (see e.g. Buryachenko, 2001; Buryachenko and Pagano, 2003; Buryachenko and Tandon, in press
where the additional references can be found) that are more sensitive than the effective elastic moduli to the
microstructure). The fundamental role of the statistical averages of the second moments of stress con-
centration factors in failure analysis is explained by the fact that both the fiber/matrix interface failure
criterion and the energy release rate are quadratic functions of the local stress distributions. Because of this,
the development of analytical methods is of profound importance for the practical applications.

A considerable number of analytical methods which yield the effective elastic constants and stress
averages in the components are known in the linear theory of composites. Appropriate, but by no means
exhaustive, references are provided in the reviews by Shermergor (1977), Christensen (1979), Willis (1981),
Mura (1987), Kreher and Pompe (1989), Nemat-Nasser and Hori (1993), Kanaun and Levin (1994),
Buryachenko (2001), Torquato (2002a) and Milton (2003). It appears today that variants of the effective
medium method (Kroner, 1958) and the mean field method (Mori and Tanaka, 1973; Benveniste, 1987) are
the most popular and widely used methods. The notion of an effective field in which each particle is located
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is a basic concept of such powerful micromechanical methods as the methods of self-consistent fields and
effective fields (see for references Kanaun and Levin, 1994; Buryachenko, 2001). The “quasi-crystalline”
approximation by Lax (1952) is often used for truncation of the hierarchy of system of integral equations
involved leading to neglect of direct multiparticle interactions of inclusions. This noninteraction deficiency
was overcome recently by the multiparticle effective field method (MEFM) which includes as particular
cases the well-known methods of mechanics of strongly heterogeneous media (such as the effective medium
and the mean field methods) (see for references Buryachenko, 2001). The MEFM is based on the theory of
functions of random variables and Green’s functions. Within this method a hierarchy of statistical moment
equations for conditional averages of the stresses in the inclusions is derived. The hierarchy is established by
introducing the notion of an effective field. In this way the interaction of different inclusions is taken directly
into account.

It is known that using a one point probability density (volume fraction) can provide only a rough
estimation of the bounds of the effective properties and statistical averages of stresses in the constitutive
equations of composite materials. More informative characteristics of the point set are obtained using
statistical second-order quantities (such as two-point probability density, second-order intensity function,
and nearest neighbor distribution) which examine the association of a point relative to other points. These
statistical distributions have been used for generating concrete realizations of the location of a final number
of interacting inclusions and analyzed using elastic analysis (see €.g. Ghosh et al., 1997; Pyrz and Bochenek,
1998). More rigorous estimations of the statistical average of stress fields in the constituents and therefore
of effective elastic moduli are based on the statistical averaging of random integral equations for an infinite
number of inclusions where the configuration is described by statistical second-order functions (see for
references Buryachenko, 2001; Torquato, 2002a,b). In particular, in the current paper we demonstrated the
strong dependence of effective moduli on the concrete form of the radial distribution function and dem-
onstrated strong differences in effective moduli for apparently similar distributions.

It is noted that the estimation of the effective elastic moduli is a linear problem, with respect to the stress
field analyzed which is less sensitive to the local stress distribution than nonlinear micromechanical
problems of elastoplastic deformation, fracture, and fatigue of composite materials depending, at least, on
mean-square stress fluctuations in the constituents (see e.g. Ponte Castaneda and Suquet, 1998; Bury-
achenko, 2001; Lipton, 2003). Buryachenko (2001) estimated the second moment of stresses averaged over
the volume of the constituents by the use of the radial distribution function (RDF) with application for the
analysis of a wide class of nonlinear problems. The estimations of second moment of stresses are defined by
both the random stress fluctuations in the components and the inhomogeneity of the stress fields in the
constituents which cannot be separated in the framework of the method proposed. However, the method
also allows one to estimate the second moment of stresses for interface stresses at each point on the
interface between the matrix and fibers. The dispersion of these interface stresses, defined only by stress
fluctuations, will be used in this paper for the prediction of the failure initiation. The failure initiation is
dependent on the size and the volume fraction of fibers, their surface treatment, matrix and fiber properties.
A change of the adhesion properties of the interface, defined by the surface treatment, has a smaller effect
on modulus than on strength. Indeed, even poor adhesion between the constituents does not appear to be
an important factor as long as the frictional forces between the phases are not exceeded by the interface
stress. Because of this, the estimation of the failure initiation envelope of the interface is of practical
interest.

The outline of the paper is as follows. In Section 2, the quantitative descriptors of the dispersion of fibers
in unidirectional composites will be analyzed in order to describe the pattern of fiber location as observed in
test specimens rather than as described by some assumed model. Since generated random packing struc-
tures are strongly dependent on the procedure of their generation, we will consider a few popular algo-
rithms and their combinations, adapted for obtaining the most homogeneous configurations and will
compare the statistical parameters of configurations generated by the different methods. In Section 3 the
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dependence of effective elastic properties of fiber composites on the radial distribution functions estimated
from experimental data as well as from the ensembles generated by each proposed method is discussed. In
Section 4 the statistical moments of stresses for the ensemble of inclusions as well as the second moment of
interface stresses are derived. Section 5 determines the local and effective failure envelopes for matrix
microcracking and interface failure, and in Section 6 numerical examples are presented.

2. Preliminaries

Let stresses and strains be related to each other via the constitutive equation
a(x) = L(x)&(x), (2.1)
where L is the fourth-order anisotropic elasticity tensor, which for isotropic materials is given by
L = (dKi4,2Gy) = dKgN; +2GgN,, Ny =0®0/d, N, =1-N, (2.2)

K4 and Gy, are the bulk and shear moduli, respectively;  and I are the unit second-order and fourth-order
tensors. The interrelations among the planar and three-dimensional moduli can be found, e.g. in Torquato
(2002a). For example, for plane strain Gy = Gz, Kp = Kp+ Gp/3, Ep = Ep)/(14 vi)(1 —v),
Vo) = V[3]/(1 — V[g]) and for plane stress G[z] = Gm, K[z] = 9K[3] G[;]/(3K[3] + 4G[3]), E[z] = E[3], V2] = Vp3] where
E and v are the Young modulus and Poisson’s ratio. The local strain and stress tensors satisfy the linearized
strain-displacement relations and the equilibrium equation, respectively. We consider a mesodomain w,
subjected to the uniform traction boundary conditions.

In the mesodomain w containing a set X = (¥V,,x;, ;) (i =1,2,...) of ellipsoids v; with characteristic
functions ¥;, centers x;, semi-axes a{ (j=1,2,3) and an aggregate of Euler angles w;, a characteristic
function W is defined. It is assumed that all inclusions have identical mechanical and geometrical proper-
ties and are grouped into the component v!"). In the matrix v© =w\ v and in the inclusions vV the
tensor f(x)(f=L,M,M=L"") is assumed to be constant: f(x)=f" for xcv® and f(x)=
O 4+ (x) = O 4 f(ll) for x € v, The upper index of the material properties tensor put in parentheses
shows the number of the respective component. The subscript 1 denotes a jump of the corresponding
quantity (e.g. of the material tensor). The phases are perfectly bonded.

For random structure composites, we introduce a conditional probability density ¢(v,,, X,,|v;, X;), which
describes the probability density of finding the mth inclusion in the domain v, with the center x,,, the
inclusions in the domains v; with the centers x; # x,, being treated as fixed. We will consider statistically
homogeneous media, when all the random quantities under discussion are statistically homogeneous and,
hence, the ensemble averaging could be replaced by volume averaging

() =w / OWE)dx, ()Y = 5] / (7O (x)dx, (23)

where > V) =3V, i=1,2,..., and the bar appearing above the region represents its measure, e.g.
v=mes v. Of course, @(v,,X,|;v;,%;) =0 for values of x, lying inside the “included volumes”
W) (m=1,...,n), where 1) D v, with characteristic functions ¥ (since inclusions cannot overlap).
@(v;,X) is a number density n(x) of inclusions in the point x and ¢! = ¢(V(x) is the concentration, i.e.
volume fraction, of the component v") in the point x : cV(x) = (FV)(x) = vin(x), cV(x) = 1 — (FD)(x).
Here the notation ((-))(x) will be used for the average taken for the ensemble of a statistically inhomo-
geneous field X = (v;) in the point x. The notation ((-)), denotes the average over the component
vW (k= 0,1). @(v;) is a number density n of component v'V) 3 v; and ¢ (k = 0,1) is the concentration, i.e.
volume fraction, of the component v : ¢ = (FIV(x)) =50V (k=1; i=1,2,...), ¢V =1— (V).
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Only if the pair distribution function g(x; — X,,) = @ (v, Xi|; U, X,,)/n® depends on |x,, — x| it is called
the radial distribution function (RDF). The RDFs estimated from experimental data utilized a digital
image processing technique to identify fiber centroids and describe the stochastic structure of the material
through estimation of the statistical parameters and functions that describe the radial fiber distribution (see
Buryachenko et al., 2003). An example of one of the micrographs for a carbon fiber-reinforced epoxy
composite (V) = 0.65) used to determine the experimental RDF is shown in the Fig. 1. The numerical
simulation was carried out by the modified collective rearrangement model (CRM) accompanied by the
random shaking procedure, creating the most homogeneous and mixed structures that do not depend on
the initial protocol of particle generations (see for detail Buryachenko et al., 2003).

In Fig. 2 we compare the RDF estimated from the experimental fiber centroid data with that from
numerical simulation by the CRM, as well as the RDF represented analytically by

g(x; —x,) = H(r — 2a), (2.4)

n—ZSin_l(é)—é\/l—%;]HMa—r)}, (2.5)

where H denotes the Heaviside step function, r = |x; — x,| is the distance between the nonintersecting
inclusions v; and v,, and c is the area fraction of circle inclusions with the radius a. The so-called well-stirred
approximation for the RDF differs from the RDF for a Poisson distribution by the availability of “included
volume” with the center x; where g(x; —x,) = 0. Eq. (2.5) (see Torquato and Lado, 1992; Hansen and
McDonald, 1986) takes into account a neighboring order in the distribution of the inclusions. Fig. 2 shows
a good fit between RDFs estimated from experimental data and from numerical simulation and are sub-
stantially dissimilar from the curves (2.4) and (2.5). The experimental data for a carbon fiber-reinforced
epoxy composite were obtained by averaging over ten materials specimens each of the 10 samples con-
taining around 2000 fibers (see for details Buryachenko et al., 2003). In Fig. 3 the functional dependences of
the RDF on the relative radius for four different volume concentrations are presented. As can be seen, the
experimental data is close to the numerical simulation but not close to the predictions from using Eq. (2.4)
or (2.5) as compared to the measured RDF.

g(x; — x,) :H(r—Za){l —I—%

Fig. 1. Typical micrograph of fiber reinforced composite specimen used in determining experimental radial distribution function
V) =0.65.
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g(r)

2.0 8.0

40 60
Relative radius r/a
Fig. 2. The radial distribution functions g(r) vs relative radius »/a estimated by the numerical simulation (solid curve), from experi-

mental data (dotted curve), by the analytical approximation (2.5) (dot-dashed curve), by the well-stirred approximation (2.4) (dashed
curve).

g(r)

©2.0 40 6.0 8.0
Relative radius r/a

Fig. 3. The radial distribution functions g(r) vs relative radius /a estimated by the modified CRM at ¢ = 0.60 (dashed curve), ¢ = 0.65
(dot-dashed curve), ¢ = 0.70 (dotted curve), ¢ = 0.75 (solid curve).

3. Effective elastic properties

First, we will summarize the basic assumptions and the final formulae of the multiparticle effective field
method (MEFM) for estimation of effective elastic moduli. For a detailed discussion and numerous refe-
rences for this and related methods, the reader is referred to Buryachenko (2001).

The general integral equation is known (see for references Buryachenko, 2001)

a0 = (o) + [ T(x=y)ln(y) ~ (n(y)]dy, G.)

where the tensor g(x) = M, (y)a(y) is called the stress polarization tensor, and the notation {(-)) will be used
for the statistical average. The integral operator kernel I'(x —y) = —L”[I6(x —y) + VVG(x — y)L”] is
defined by the Green tensor G of the Lame’ equation of a homogeneous medium with an elasticity tensor
LY VLYV ® G(x) + (V® G)']/2} = —86(x); 6(x) is the Dirac delta function.

After conditional statistical averaging Eq. (3.1), turns into an infinite system of integral equations. In
order to close and approximately solve this system we now apply the MEFM hypotheses
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(H1) Each inclusion v; has an ellipsoidal form and is located in the field
ai(y) =a(x;) (y€uv) (3.2)

which is homogeneous over the inclusion v;.
(H2) Each pair of the inclusions v; and v; is located in an effective field a(x), ; and

(G(X),,) = (64)(x) = const. (X € v,k =i, ). (3.3)

According to hypothesis (H1) and to Eshelby’s theorem we get (x € v;)

o(x) =Be(x), vm;(x) = Re(x), (3-4)
where R = E,M(II)B, B= [I+QM 'I”" and the tensor Q = —(I' ) 18 associated with the well-known
Eshelby tensor S by S =1 —MYQ. Hereafter 4, = (y(x)V; X)) is an average over the volume of the

inclusion v; (but not over the ensemble) () ={())@)» and th tensors
_ _(Ei)ilQia yGUf; _
=3 = {0y - Sy, ¥ e, T = Tl ()

(z € v; # v;) have analytical representations for the spherical inclusions in an isotropic matrix.
The hypotheses (H1), (H2) can be used for an approximate solution of Eq. (3.1) and subsequent esti-
mation of effective elastic moduli in the overall constitutive equation (¢) = L*{(s):

M =M? + YRn, Y' :I—/ T 1y(Xi — X,) dx,, (3.6)

T i(xi —xg) = R{ Ty (x; — x,)[Zyi + Zyy)g(r) — Ti(x; — x,) }, (3.7)

where r = |x, — x;|, and the matrix elements Z, Z,, are nondiagonal and diagonal elements, respectively,
of the binary interaction matrix Z for the two inclusions v, and v; with the elements of the inverse matrix

(Z_l)iq =10, — (1 = 3i)R Ty (Xi — X;). (3.8)

Thus, the effective elastic moduli L* explicitly depend on the RDF g(r) and the volume concentration
¢ = nv; of inclusions. Neglecting the binary interaction of inclusions yields

Ziq = Iéiq (39)

reduces the formula (3.7) for the effective elastic moduli to the analogous relation obtained by Mori-Ta-
naka method which is invariant to the RDF g(r).

4. Statistical moments of stresses in the components

The mean field of elastic stresses inside the inclusions (6), is obtained from (3.4) and (3.6)
(6),;=M{")'Da’, D=R'YR, 4.1)

where the tensor D has a simple physical meaning of describing the interaction of neighboring inclusions on
the inclusion i : (), = De”. The mean matrix stress follows from the relation:
1
() = W(GO —(a7)). (4.2)

The fourth rank tensor of the second moment of stresses (6 ® o), averaged over the volume of the com-
ponent v®, (k=0,...,N) can be exactly determined by the perturbation method from the functional
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dependence of the effective compliance M*, stored energy U* and effective eigenstrains * on the compliance
of the component v¥) (see for references Buryachenko, 2001)

1 oM*
(k) _ 0 0
<O'®O'> —Wwa ®O’, (43)
or in index form:
k 1 aM* rs 0 _0
<O'[j0mn> = E aMng> O-pqo-rs' (44)

ijmn

Relations (4.3), (4.4) have been obtained for any degree of anisotropy of M", M%(;i=0,1,...,N). For
isotropic tensors MY = (3p0,2¢) = 3p@N; + 2¢)N,, (N; =  ® §/3,N, = I - N;), we have

k 7S k pqrs
<O'(2)>< ) = _(k) fz) 62q02§,7 <SS>( ) = —0 UO O'O (45)

2c6) gtk “ra¥r

where oy = d6/3, s = Nyo. Eq. (4.5) are reduced to the results found by Bobeth and Diener (1986) for
macroisotropic composites.
The stress in the vicinity of the inhomogeneities v; in the matrix ¢, (n) is given by the formula

6 (n) = B(n)s" (x), (4.6)

1

where 67 (n) and 67 (x) are the limiting stress outside and inside, respectively near the inclusion boundary
0v; : 67 (n) =lime(y), 67 =lime(z), y =X, Z— X, y € 0y, ZE v;, X € 0v;, n L Ov;; n is the unit outward
normal vector on Ov;. The relation (4.6) is valid for any geometric form of the inclusion v;. The tensor B(n)
only depends on elastic properties of contacted materials and on the direction of the normal n:

Bn)=L [I+U() (L"—L")M", 4.7
where U(n),, = [nkG(n)innn](k,)W), and the matrix G(n)” = [L(n) ] is the inverse of the matrix

L(n)” =L n®n. Here the symbol + and — relate to the different boundary sides. In particular for an
isotropic medium with the elastic modulus (2.2) an inversion of the matrix L(n) may be simplified and we
obtain

u B 2k +p
L(n),, = oy + (k + §>nknlv G(n)y =u' <5k1 - m"k”z) (4.8)
1 3k —2u
U(n) g = Z (Eklmn - mnkn/nmnn>~ (4.9)

Substitution of Eq. (4.1) into Eq. (4.6) leads to the estimation of statistical averages of stresses in the matrix
in the vicinity of inclusions at a point x € v,

(6; (n)), = B(n)BD(a). (4.10)
Moreover, Buryachenko (2001) has obtained the estimation of the second moment of these stresses
(o; (n) @ o, (n)), = [B7(n) @ B (n)](c) @ (), (4.11)
where one introduced the interface stress concentrator factor
1 oM”*

(87 (n) 2 8" ()] = = [B(n) & B(n)] ®12)

oM®”

Neglecting of stress fluctuations in the fibers (6 ® a) ) = (6) ;) ® (6);) leads to the simplification of
Eq. (4.11)
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[,%’*per(n) ® %’*per(n)] = B(n)BD ® B(n)BD. (4.13)

The second moment of stresses can be estimated not just by the perturbation method (4.3), but also by the
method of integral equations

(6 ® o->i = (o->i ® <°'>i + /[BTip(Xi - Xp)('l)pﬁp] ® [BTip<Xi - XP><'1>1)E‘I] ’ (p(vmxpl; Uivxi) pr. (4-14)

It was demonstrated (see for references Buryachenko, 2001) that both Egs. (4.3) and (4.14) lead to similar
results. Then the second moment of interface stresses can be presented in the form (4.11)

(6, (n) ® o; (m)), = [ (n) @ B (n)](6) @ (o), (4.15)
where
[g*illt(n) ® r%*int(n)]

= B(n)BD ® B(n)BD + / B(n)BT,,(x; — x,)R ® B(n)BT,,(x; — x,)Ro(v),, X,,|; v, X;) dX,,. (4.16)

The representations (4.15) and (4.16) were obtained with additional simplifying assumptions for the
hypothesis (H1) and (H2) which are used for the concrete estimation of the second moment of stresses by
the perturbation method (4.11) and (4.12). More accurate cumbersome integral representations generalizing
Eq. (4.16) were obtained by Buryachenko and Rammerstorfer (1998).

5. Effective failure envelope
5.1. Local failure envelope

The failure analysis of composite materials considers the initiation and accumulation of damage oc-
curing in each phase of the material and involves several types of local degradation processes including
matrix microcracking (type I), interfacial debonding (type 1), and fiber breakages (type III), etc. Generally,
these failure mechanisms may initiate concurrently in an early loading stage and progressively accumulate
inside the materials (see for references and detail Kutlu and Chang, 1995; Meraghni et al., 1996; Reddy,
1994; Desrumaux et al., 2001).

The first type of damage processes are those that relate to matrix degradation. They include matrix
microcracking and pseudo-delamination. The second type of degradation models describe interfacial
decohesion and related mechanisms, such as fiber matrix friction and fiber pull-out processes. Let us assume
that the well-known tensor-polynomial strength criterion by Tsai and Wu (1971) describes the initiation of
failure mechanisms of the types I and III for each component, i.e. the equivalent stress is given by

H@(a) — Hl(f)a+H2(i)(a®a) +H3(i>(a®0'®a) +.o=1, (5.1)

where i = 0,1, ..., and the second-, fourth- and sixth-rank tensors of strength IT', IT>, IT> are expressed
through technical strength parameters for different classes of material symmetry (Theocaris, 1991; Zhiging
and Tennysin, 1989). It should be mentioned that in the Section 5.1, the tensor ¢ = ¢(x) stands the local
stresses in the composite material. The criterion (5.1) includes the Von Mises equivalent stress criterion
(6% = const.)

I(s) = %[(011 — 022)2 + (022 — 033)2 + (o1 — 033)2} + 3[(012)2 + (013)2 + (023)2] =1. (5.2)
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The modeling of global composite behavior necessarily requires the consideration of interface degra-
dation in addition to the matrix and fiber phase degradation (5.1). This requires not only the calculation of
the stress at the interface, but equally the identification and the application of a local failure criterion. In a
similar manner with Eq. (5.1) we can present a tensor-polynomial failure criterion for the interface failure
initiation

Y (n,6) = IL" ()~ (n) + IL ()6~ () @ 6~ ()] + -+ = 1, (5.3)

where ¢ (n) is the limiting stresses within the matrix near the inclusion boundary x € 0v; with the unit
outward normal vector n. Generally speaking adhesion strength parameters T (n), TI2" (n), TE" (n),
which convey the normal and the shear debonding at the interface between the matrix and the fibers, differ
from II'?, 1127, 1PV,

We will present now popular local criteria that convey the normal and the shear debonding at the
interface between the matrix and the fibers. Determination of the failure characteristics of the interface is
carried out through a mechanical characterization of the interfacial resistance by means of specific tests
such as fiber pull-out, fiber push-out, etc. The interface stresses o, =6 (n)n can be partitioned as
6, =N"6(n) + T"6~(n), where N" and T" are the three-rank functions of the normal n such that

L

1
Niy = mimgny, - Ty = 3 (Ouny + Sung) — mingn,, (5.4)

where the tensors N}, and 7}, symmetrical under the interchanges k& < / generate the normal ¢, = N"¢™ (n)
and tangential components 6, = T"6 (n) of the traction ¢~ n with the magnitudes ¢, = ||6, || = o;,nn; and

0. = |67 || = \/ogon — (0,)°, respectively.

In a simple maximum stress criterion, the normal o, and tangential ¢, components are compared to
maximum values ¢™* and ¢™* characterizing the interface, and the failure tensors IT2”)(n) have a form

ﬁz<,~>(n)_max{||N"a-<n>|| ||T"a-<n>||} max[ o o ]1. 55)

a max ’ max max ’ smax
an 0‘[ O-n GT

Other type of criteria taking into account the friction problem were considered by a number of authors (see
for references Mura et al., 1996). The Coulomb form of the criterion (see Arnould, 1982) permits the
introduction of the friction coefficient at the interface by the use of a linear combination between the
normal and the shear interface stresses
1120 (n) — IN'e" ()] | [Ts”(m)]| _

a max max
Gn Gr

1. (5.6)

Logical generalization of tensor-polynomial criteria (5.1) to the interface failure initiation was proposed by
Sun and Zhou (1988) (see also Kwon and Eren, 2000) for the cylindrical fibers, which in our more general
notations has a form

=1 (5.7)

a

The criterion (5.7) can be recast in the tensor-polynomial form (5.3) with the tensors Hi(f) (n) =0 and

; 1 1 1
2(i
Ha‘(i;kl (n) = [W — W‘| nin;nin; + W (5,‘[{}’1.]'[ + 5l'[njk + 5.]'[711'/{ + 5jkni[). (58)
Because the criteria (5.5)—(5.7) should predict the identical stresses of the failure initiation at the pure local
normal and shear stresses then the empirical interfacial strengths corresponding to tension and shear should
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be the same in the criteria (5.5)—(5.7), and, therefore, the failure envelope (5.7) is inserted between the
failure surfaces (5.5) and (5.6)

15" (n) < 15 (n) < I (), (5.9)
where the equalities

I, (n) = I, (n) = I (n) (5.10)
in general hold just for the normal n with either the pure normal or pure tangential local loading

6 (n)=N"6"(n) or ¢ (n)=T"s (n). (5.11)

The equalities also hold in some particular cases of correlations between the elastic and strength properties
of constitutives. For example, the equalities (5.10) are valid for any n for the limiting type of soft fibers
(hole, L'V = 0) when o, =0 and the interface failure is degenerated into the failure of the matrix in the
vicinity of the interface. In another limiting case of perfect sliding ¢™** = 0 (see for references Mura et al.,
1996) the equality is also valid for any n. Moreover, the last statement also holds if under the failure ini-
tiation one understands the normal debonding (u™ —u~)n > 0.

It should be mentioned that the transverse strength of the reinforced fiber is usually significantly higher
than that of the matrix. The popular assumption is that the strengths of the interface and the matrix are
equal (i.e. the bonding between fiber and matrix is assumed to be perfect, see e.g. Ghassemieh and Nassehi,
2001). As an approximation, ¢™** is also taken to be a half of ¢™** as usually assumed in a homogeneous
isotropic material (see e.g. Kwon and Eren, 2000). In light of the heuristic level of justification, the
importance of the fundamental experimental work by Tandon et al. (in press) can scarcely be exaggerated.
They have used the single-fiber cruciform test to characterize the initiation of fiber-matrix interface failure
in a model composite with the interface subjected to a combined state of transverse and shear stress at a
location away from a crack tip or free edge. The elimination of the free-edge effect that requires modeling of
a stress singularity, was accomplished by utilizing a cruciform specimen geometry with the arms containing
the embedded fiber inclined at the different angles with respect to unit axial tension. The ratio of the normal
and shear loading at the interface was governed by the amount of off-axis angle the fiber made with the
loading direction.

5.2. Effective failure envelope

A common way to produce an effective failure envelope for the composite materials is substitution of the
component average stress values into the formula (5.1) (Arsenault and Taya, 1987; Reifsnider and Gao,
1991) (i =0,1,...)

IT'(6) = max[I1'"{(s), + IV ((6), ® (s),) + I ((6), ® (6), ® (o)) + -] = L. (5.12)

As this takes place, the strength criteria in the formula (5.12) brings us to physically inconsistent results,
which will be shown later.

It is believed that the following definition of effective strength surface based on fewer assumptions is
more correct (see e.g. Buryachenko, 2001; Ponte Castaneda and Suquet, 1998)

' (6) = max[IPY(g), + M*" (¢ ® 6), + MV (6 @ 6@ 6), + -] = 1, (5.13)

where the estimations of average stress moments of different orders (6),, (6 ® 6),, (6 ® 6 ®6),(i=0,1,...)
can be found by the use of the relevant formulae of Section 4.

Let us show the physical consistency of the effective strength criterion (5.13) (in contrast to (5.12)). In
fact, let us consider a two-component isotropic composite with isotropic phases. In this case one may
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observe that symmetry requires that average stresses inside both components will be hydrostator, one
(o1), = (ou)o(1 — ¢)/c = 69,64; in so doing the microstructure of and the method of calculation of average
stresses inside the components (for example (4.1) or any other formula) influence the value of scalar o9, but
have no effect on the tensor structure of the fields (a),, (6),. Then the composite strength is dictated by the
strength of the component which is to be found under conditions of hydrostatic tension and is not
determined by the strength of second component. If the strength of the second component falls far short of
the strength of the first one, we will obtain an improper prediction of composite strength. In fact, according
to (4.5) and (4.16), the average values of second deviator invariant inside each component
(ss); # O(sy = 01y — 04011/3; 1 =0,1,...). Therefore the composite strength is defined by the strength of
second more weak component at the cost of the fluctuations of the stress deviator.

If the possibility of interfacial fracture is taken into account, the macrostrength criterion can be ex-
pressed in the following form (i =0,1,...)

IT (6) = max {H*((o‘)), max max [H(ll(f)(n)@'* (m)), + Hi(i) (m)(e"(n) ® 6™ (n)), + - ] } =1, (5.14)
where (¢~ (n))_, (6~ (n) ® 6~ (n)),, and are the statistical moments of limiting stresses within the matrix near

the inclusion boundary x € Ov; with the unit outward normal vector n (4.10) and (4.11).
In particular, exploring the local failure envelope (5.7) yields the effective failure criterion

(o) ® <6>}-

Nn%*pcr (n) ® Nn%*pcr (n) + Tn%*pcr (n) ® Tnﬁ*pcr (n)

2 2
(a3%) (a7%)

IT (6) = max {H*((o)),mﬂax

6. Numerical results

This section attempts to quantitatively investigate the performance of the present approach to the failure
analysis of fiber composites. The results are directly compared with solutions extracted from simplified
assumptions (such as Mori-Tanaka approach as well as hypothesis of a homogeneity of stresses in the
constituents) and they are presented in order to place the advantages and limitations of the refined ap-
proach in evidence.

At first, in order to demonstrate the comparison of the available experimental data with the prediction
capability of the proposed method, we will consider the estimation of the effective elastic moduli L* (3.8).
Assume the matrix is epoxy resin (k”) = 4.27 GPa and u'” = 1.53 GPa) which contains circular glass fibers
that are all identical (k") = 50.89 GPa and u") = 35.04 GPa). Four different radial distribution functions
for the inclusions will be examined (see Torquato and Lado, 1992; Hansen and McDonald, 1986). The
effective shear moduli p* (GPa) for composite materials with the mentioned elastic properties of constit-
uents and the different RDF are presented in Fig. 4. As can be seen, the use of the approach (3.7) based on
the quasi-crystalline approximation (3.9) (also called Mori-Tanaka (MT) approach) leads to an underes-
timate of the effective shear modulus by 1.85 times for ¢ = 0.7 compared with the experimental data. Much
better approximations are given by the MEFM (3.6)—(3.8) which shows good agreement with the experi-
mental data provided by Lee and Mykkanen (1987). In the MEFM model, the best fit is obtained using the
RDF simulated by the modified CRM.

For failure analysis, let us consider an isotropic composite made from the epoxy matrix and SCS-0 fi-
bers. Both components are described by isotropic elastic properties (2.2) with the mechanical constants as
usually found in the literature (see Tandon et al., in press): k) = 3.82 GPa, u¥ = 1.74 GPa, k') = 190.47
GPa, uV =173.914 GPa, ¢™* =34.8 MPa, ¢™* = 32.5 MPa. At first we will consider well-stirred
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Effective shear modulus

00 02 _ 04 08

Fiber volume fraction

Fig. 4. Variation of the effective shear modulus p* (GPa) as a function of a concentration of the inclusions ¢. Experimental data (O)
and curves calculated by Eqgs. (3.6)—(3.8) and 2.5 (solid line), by (3.6)—(3.8) with the RDF simulated by the modified CRM (dot-dashed

line), by (3.6)—(3.8) and 2.4 (dashed curve), and by the Mori-Tanaka method (dotted line).

20.0
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o0:0

0 10.0 20.0 30.0
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Fig. 5. Effective failure envelopes estimated by the different methods; dilute concentration of fibers (curve 1), the MEFM (5.15), (4.12)
with the RDF (2.5) (curve 2); the MEFM (5.15), (4.12) with the RDF (2.4) (curve 3); the MEFM (5.15), (4.13) (curve 4); Mori-Tanaka
approach (curve 5); elliptical approximation of Mori-Tanaka approach (curve 6).

approximation of the RDF (2.4). In general, interface failure occurs much more easily under a tensile
normal than a compressive normal stress. That is, the normal strength ¢*** is much greater for compression
than for tension. As a result, interface failure under a compressive normal stress will not be considered in
this paper. In Fig. 5 the failure envelopes are plotted in the first quadrant of a coordinates system
X ={(o11) 20 and Y = (02) = 0. The non elliptical curve 1 corresponds to the dilute concentration of
fibers ¢V < 1.

The curves 2 and 3 were estimated by the MEFM method (5.15), (4.12) with the RDF (2.5) and (2.4),
respectively. Neglect of stress fluctuation (4.13) transforms the curve 3 into the curve 4. Ignoring of the
binary interaction of fibers (3.9) automatically leads to the neglect of stress fluctuations (4.13) and tends to
increase of the failure prediction as described by the curve 5. It should be mentioned that all curves 1-5 are
not elliptical in the global coordinate system of macrostresses (¢) (and, therefore, cannot be described by
the quadratic Tsai and Wu, 1971 criterion) although the failure envelope (5.7) is described by a quadratic
function of the traction (o, ), in the local coordinate system connected with the fiber surface. The non
elliptical shape of the effective failure envelope is demonstrated by the comparison of the curve 5 with the
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elliptical curve 6 with the same semi-axes as the curve 5. It is interesting that the non elliptical shape of the
effective limiting surface for the porous materials was demonstrated by Buryachenko (2001) in the related
problem of onset of yielding at the porous surface.

The popular engineering simplification is based on the neglect of shearing failure in comparison with the
failure initiated by the normal component of the traction ¢, . That is equivalent to the assumption

o =00 (6.1)
the error of which we will estimate now by the example of the comparison of the curves 2 and 4 in Fig. 5
with the corresponding curves of effective failure envelopes plotted in the framework of the assumption
(6.1). As can be seen in Fig. 6, the significant differences of effective failure envelopes estimated for the real
failure parameters ¢™** and ¢7** as well as for the assumed one (6.1) are observed just at the small values
a11. In the case of the well-stirred RDF (2.4) accompanied by the disregard of stress fluctuations in the
fibers (4.13), the influence of the assumption (6.1) can be neglected in the area of moderate tension loading
(o11) > 0.20M,

The influence of the RDF on the effective failure envelopes will be estimated for the analytical repre-
sentations (2.4) and (2.5) as well as for the numerical simulation by the CRM accompanied by the random
shaking procedure. Only the perturbation method of estimations of the second moment of the interface
stresses (4.11) by the MEFM and the failure criterion (5.15) will be analyzed. The difference between the
estimations increasing with the rise of the fiber concentration vary from 1% till 6% at ¢ = 0.45 and 0.75,
respectively (see Fig. 7). In so doing the difference between the estimations obtained for the RDF (2.5) and
for the simulated RDF does not exceed 0.8%.

Let us compare the effective failure envelopes predicted by the use of two different methods of the
estimation of the second moments of interface stresses such as the perturbation method (4.11) and
the method of the integral equations (4.15). In both cases the RDF simulated by the CRM accompanied by
the random shaking procedure were used. As can be seen in Fig. 8, the maximum of the difference of the
effective failure envelopes does not exceed 1.7% and is reached in the area of the large values of the tension
components ¢;; and the large fiber concentration. This difference of the effective failure envelopes insig-
nificantly increases for an increasing elastic mismatch of the constituents. For, example the replacement of
the real SCS-0 fibers by the model rigid fibers leads to the difference of the effective failure envelopes of 1.9%
for ¢ = 0.75 and (61,) = 0.

20.0

Y(MPa)

10.0

c,0

0.0 10.0 20.0
X(MPa)

Fig. 6. Effect of shearing stresses on effective failure envelopes. Estimation by the MEFM (5.15), (5.13), (2.5) and (5.15), (5.14), (2.4) for
the real failure parameters (solid and dot-dashed curves, respectively). Analogous estimations for the assumed failure parameter (6.1)
(dotted and dashed curves, respectively).
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Fig. 7. Effective failure envelopes estimated for the different RDF: (2.4) (¢ = 0.75, solid curve), (2.5) (¢ = 0.75, dotted curve), CRM
(¢ = 0.75 and 0.45, dot-dashed and dashed curves, respectively).
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Fig. 8. Effective failure envelopes estimated by two different method of the evaluation of the second moment of stresses (real SCS-0
fibers): (4.11) (c = 0.75 and 0.45, solid and dotted curves, respectively), (4.15) (c = 0.75 and 0.45, dot-dashed and dashed curves,
respectively).

7. Concluding remarks

A detailed discussion is given on the main hypotheses as well as the limitations of the proposed esti-
mations and their possible generalizations. The main scheme as well as a brief discussion of limitations and
of possible generalization and application of the methods proposed is presented.

Since the effective properties of fiber reinforced composites are dependent on the details of the micro-
structure, the quantitative description of the microtopology is crucial in the prediction of the overall
mechanical and physical properties of these materials. In particular, micromechanical failure initiation in
aligned fiber composites is sensitive to both local and non-local fiber distribution and many studies have
shown that fracture properties of multi-phase composite materials are strongly affected by the spatial
heterogeneity of the reinforcing phases. The MEFM has been used to accurately predict the effective
properties of aligned fiber composite materials and to determine the dependence of the properties on the
radial distribution function. The RDF of unidirectional composites was estimated by the use of several
methods, including a numerical simulation exploring the collective rearrangement model with a random
shaking procedure. The numerical simulation provided good agreement to RDF estimated from experi-
mental data.
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The estimation of the second moment of stresses including the second moment of fiber/matrix interface
stresses was used in the proposed generalization of the tensor-polynomial strength criteria to the case of
fiber/matrix interface failure taking into account the binary interaction inclusions effects, that are directly
dependent on the fiber radial distribution function. This method allows one to take into account some non-
local effects of micromechanical fiber/matrix interface failure prediction. The prediction of failure initiation
envelopes for interface failure, obtained using several methods for representing the radial distribution
function, are compared and found to vary considerably based on the manner in which the RDF is
determined, on whether or not the fiber stress fluctuations are ignored, and on the binary interaction of the
fibers. The non-elliptical shape of the effective failure envelops using the proposed method is demonstrated
for the first quadrant o;; > 0, o1, = 0. The use of the developed effective failure envelopes for inhomo-
geneous microstructure can provide accurate material behavior predictions that can be realized through
realistic representation of the constituent behavior and the realistic representation of the microtopology of
the composites.

The progress in micromechanics of random structure composites is based on the methods of allowing
for the statistical mechanics of a multi-particle system considering n-point correlation functions and
direct multiparticle interaction of inhomogeneities. In so doing, the main disadvantage of the proposed
method is the use of the hypothesis (H1), which is the basic hypothesis of of a number of popular
methods of micromechanics (see for references Buryachenko, 2001). The use of this homogeneity
hypothesis 6;(y = const.) (y € v;) (3.2) leads with necessity to the conclusion of the homogeneity of stress
field inside ellipsoidal homogeneous inclusions according to the Eshelby theorem (3.4). However, mi-
cromechanical modeling and simulation of random structures are becoming more and more ambitious
due to an advantage of modern computer software and hardware (see e.g. Buryachenko, in press). From
one side, some models are developed with the aim to minimize the empirical elements and assumptions.
In many cases, the detailing of basic microscopic phenomena leads to improvements of the accuracy, and
provide the potential solution to the problems previously intractable. On the other side, there are
ambitions to solve increasingly larger systems. Such methods, usually referred to the field of computa-
tional micromechanics, are based on the wide use of MC simulation with forthcoming numerical analysis
for each random realization of multiparticle interactions of microinhomogeneities. At the present level of
computer hardware and software they are only practical for realizations containing no more then a few
thousands inhomogeneities; the effectiveness of MC method is questionable for the analysis of problems
with an a priori unknown type of the effective constitutive equation such as e.g. the nonlocal problems
for the functionally graded composites. In parallel with computational micromechanics mentioned above
the classical or analytical micromechanics (such as e.g. presented method) are usually based on such
fundamental notions as the Green function and Eshelby tensor. However, a combination of the general
anisotropy of the matrix and the general shape of randomly located inclusions with continuously variable
anisotropic properties presents an impenetrable barrier to the classical approaches using either analytical
or numerical representation for the internal (S;) and external (T;) Eshelby tensors for inclusions. Because
of this, the combining of opportunities of computational micromechanics with basic assumptions of
analytical micromechanics is very promising. This makes possible the replacement of some analytical
solutions for single and interacting inclusions by their numerical representations with forthcoming
incorporation of results into the one from the general schemes of analytical micromechanics. The known
numerical methods have a series of advantages and disadvantages, and it is crucial for the analyst to be
aware of their range of applications. So, Buryachenko (2001) proposed to replace the approximate
analytical solution of the binary interacted inclusions described by the matrix Z (3.8) by the first-order
approximation of the solution obtained by the volume integral equation method (see for details Bury-
achenko and Pagano, in press). In the case of 2-D problems, Buryachenko and Kushch (in press) pro-
posed the scheme of incorporation of a simple and powerful tool such as Kolosov—Muskhelishvili
complex potentials method into the integral micromechanical equations of random structure composites.
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The challenge of modern micromechanics is a development of the general method incorporating the
solution for multiply interacting inhomogeneities obtained by highly accurate numerical methods into the
most general scheme of analytical micromechanics.
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