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Abstract

A digital image processing technique is used for measurement of centroid coordinates of fibers with forthcoming

estimation of statistical parameters and functions describing the stochastic structure of laminated fiber composites.

Comparative statistical analysis of the experimentally measured and numerically simulated fiber distributions are

performed. We consider a linearly elastic composite medium, which consists of a homogeneous matrix containing a

statistically homogeneous set of ellipsoidal inclusions. The multiparticle effective field method (MEFM) [Appl. Mech.

Rev. 54 (2001) 1] based on the theory of functions of random variables and Green’s functions is used to demonstrate the

dependence of effective elastic moduli of fiber reinforced composites on the fiber radial distribution functions as esti-

mated from measured experimental data as well as from the ensembles generated by the proposed method. The MEFM

is applied for the estimations of second statistical moments of stresses in both the constituents and the interfaces be-

tween the matrix and fibers. These estimations are used in turn for the prediction of the effective envelope for failure

initiation. The dependence of the effective failure envelope on the elastic, geometrical, and failure parameters of the

constituents and the interphase matrix/fibers are analyzed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

We consider a linearly elastic composite medium which consists of a homogeneous matrix containing a

statistically homogeneous set of elliptical fibers subjected to homogeneous remote loading. The prediction of

the behavior of composite materials by the use of mechanical properties of the constituents and their

microstructure is a primary problem of micromechanics which can ultimately lead to the estimation of stress

fields in the constituents. The quantitative description of the microtopology of heterogeneous media, such as
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fiber composite materials, is crucial in the prediction of overall mechanical and physical properties of these

materials. For example, many studies have shown that both tensile ductility and fracture properties of multi-

phase composite materials are strongly affected by the spatial heterogeneity of the reinforcing phases (see for

references e.g. Buryachenko, 2001). Even after many years of comprehensive study by extremely laborious
direct measurements and empirical relations, the effect of the structure of microinhomogeneous materials

and their influence on the mechanical properties of composites are not completely understood.

Since the overall properties of composite materials are sensitive to the details of the microstructure, the

geometrical basis for modeling actual microstructures is needed. Digital image analysis is available for

estimating descriptors of the spatial arrangement of microstructural features observed in a cross-section of

materials (see e.g. Berryman, 1985). Space Dirichlet tessellations subdividing an Euclidian space into n-
dimensional bounded convex polytopes (polygons in 2D case) are widely used to characterize the spatial

distribution, size, and shape of a filled phase (see e.g. Ghosh and Mukhopadhyay, 1991) providing a natural
and unique approach for defining a particle’s neighbors and neighborhood. The Dirichlet tessellation of the

two dimensional domain w yields a network of convex Voronoi polygons each containing a single inclusion

with the center xi ði ¼ 1; . . . ; nÞ. The interior of the Voronoi cell associated with the point xi is the region

wi ¼ fx 2 w : jx� xij < jx� xjj; 8j 6¼ ig that is the neighborhood of xi. The tessellation is constructed by

plotting lines to the centers of all nearby particles and then constructing perpendicular bisecting planes to

those lines. Green and Sibson (1977) have proposed the algorithm generating Voronoi polygons for n
points by computing in Oðn log n) time by tracing boundary adjustments, as a new polygon is fitted into a

previously generated set. Ghosh et al. (1997) have developed a material based Voronoi cell method for
directly treating multiple phase Voronoi polygons as elements in a finite element model for elastic and

thermoelastoplastic problems. They suggested a modification to the standard tessellation procedure that

protects against the situation when neighboring fibers are substantially different in size and are closely

spaced, leading to polygons which do not completely envelop their corresponding fibers and may instead

‘‘cut’’ though the fibers. Since each Voronoi cell contains a single particle surrounded by matrix, the Di-

richlet tessellation can be used for describing the statistical nature of the structure in the form of the fre-

quency distribution of the ratio of particle-to-cell volume which is also a measure of particle clustering (see

e.g. Bhattacharyya and Lagoudas, 2000).
A most common method of modeling these types of structures is to use the Monte Carlo (MC) simu-

lation to generate a random distribution of inclusions followed by a finite element analysis (FEA) of

periodically distributed mesocells containing a reasonably large number of inclusions. The usual short-

comings of the MC simulation are the prohibitive computer costs for a reasonably large number of

inclusions in the mesocells. This computational cost becomes an irresistible obstacle especially for esti-

mation of the first and second statistical moments of stresses in the constituents in the local and, especially,

nonlocal problems (such estimations are absent in the case of the FEA and available for semi analytical

methods (see e.g. Buryachenko, 2001; Buryachenko and Pagano, 2003; Buryachenko and Tandon, in press
where the additional references can be found) that are more sensitive than the effective elastic moduli to the

microstructure). The fundamental role of the statistical averages of the second moments of stress con-

centration factors in failure analysis is explained by the fact that both the fiber/matrix interface failure

criterion and the energy release rate are quadratic functions of the local stress distributions. Because of this,

the development of analytical methods is of profound importance for the practical applications.

A considerable number of analytical methods which yield the effective elastic constants and stress

averages in the components are known in the linear theory of composites. Appropriate, but by no means

exhaustive, references are provided in the reviews by Shermergor (1977), Christensen (1979), Willis (1981),
Mura (1987), Kreher and Pompe (1989), Nemat-Nasser and Hori (1993), Kanaun and Levin (1994),

Buryachenko (2001), Torquato (2002a) and Milton (2003). It appears today that variants of the effective

medium method (Kr€oner, 1958) and the mean field method (Mori and Tanaka, 1973; Benveniste, 1987) are

the most popular and widely used methods. The notion of an effective field in which each particle is located
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is a basic concept of such powerful micromechanical methods as the methods of self-consistent fields and

effective fields (see for references Kanaun and Levin, 1994; Buryachenko, 2001). The ‘‘quasi-crystalline’’

approximation by Lax (1952) is often used for truncation of the hierarchy of system of integral equations

involved leading to neglect of direct multiparticle interactions of inclusions. This noninteraction deficiency
was overcome recently by the multiparticle effective field method (MEFM) which includes as particular

cases the well-known methods of mechanics of strongly heterogeneous media (such as the effective medium

and the mean field methods) (see for references Buryachenko, 2001). The MEFM is based on the theory of

functions of random variables and Green’s functions. Within this method a hierarchy of statistical moment

equations for conditional averages of the stresses in the inclusions is derived. The hierarchy is established by

introducing the notion of an effective field. In this way the interaction of different inclusions is taken directly

into account.

It is known that using a one point probability density (volume fraction) can provide only a rough
estimation of the bounds of the effective properties and statistical averages of stresses in the constitutive

equations of composite materials. More informative characteristics of the point set are obtained using

statistical second-order quantities (such as two-point probability density, second-order intensity function,

and nearest neighbor distribution) which examine the association of a point relative to other points. These

statistical distributions have been used for generating concrete realizations of the location of a final number

of interacting inclusions and analyzed using elastic analysis (see e.g. Ghosh et al., 1997; Pyrz and Bochenek,

1998). More rigorous estimations of the statistical average of stress fields in the constituents and therefore

of effective elastic moduli are based on the statistical averaging of random integral equations for an infinite
number of inclusions where the configuration is described by statistical second-order functions (see for

references Buryachenko, 2001; Torquato, 2002a,b). In particular, in the current paper we demonstrated the

strong dependence of effective moduli on the concrete form of the radial distribution function and dem-

onstrated strong differences in effective moduli for apparently similar distributions.

It is noted that the estimation of the effective elastic moduli is a linear problem, with respect to the stress

field analyzed which is less sensitive to the local stress distribution than nonlinear micromechanical

problems of elastoplastic deformation, fracture, and fatigue of composite materials depending, at least, on

mean-square stress fluctuations in the constituents (see e.g. Ponte Casta~neda and Suquet, 1998; Bury-
achenko, 2001; Lipton, 2003). Buryachenko (2001) estimated the second moment of stresses averaged over

the volume of the constituents by the use of the radial distribution function (RDF) with application for the

analysis of a wide class of nonlinear problems. The estimations of second moment of stresses are defined by

both the random stress fluctuations in the components and the inhomogeneity of the stress fields in the

constituents which cannot be separated in the framework of the method proposed. However, the method

also allows one to estimate the second moment of stresses for interface stresses at each point on the

interface between the matrix and fibers. The dispersion of these interface stresses, defined only by stress

fluctuations, will be used in this paper for the prediction of the failure initiation. The failure initiation is
dependent on the size and the volume fraction of fibers, their surface treatment, matrix and fiber properties.

A change of the adhesion properties of the interface, defined by the surface treatment, has a smaller effect

on modulus than on strength. Indeed, even poor adhesion between the constituents does not appear to be

an important factor as long as the frictional forces between the phases are not exceeded by the interface

stress. Because of this, the estimation of the failure initiation envelope of the interface is of practical

interest.

The outline of the paper is as follows. In Section 2, the quantitative descriptors of the dispersion of fibers

in unidirectional composites will be analyzed in order to describe the pattern of fiber location as observed in
test specimens rather than as described by some assumed model. Since generated random packing struc-

tures are strongly dependent on the procedure of their generation, we will consider a few popular algo-

rithms and their combinations, adapted for obtaining the most homogeneous configurations and will

compare the statistical parameters of configurations generated by the different methods. In Section 3 the
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dependence of effective elastic properties of fiber composites on the radial distribution functions estimated

from experimental data as well as from the ensembles generated by each proposed method is discussed. In

Section 4 the statistical moments of stresses for the ensemble of inclusions as well as the second moment of

interface stresses are derived. Section 5 determines the local and effective failure envelopes for matrix
microcracking and interface failure, and in Section 6 numerical examples are presented.
2. Preliminaries

Let stresses and strains be related to each other via the constitutive equation
rðxÞ ¼ LðxÞeðxÞ; ð2:1Þ
where L is the fourth-order anisotropic elasticity tensor, which for isotropic materials is given by
L ¼ ðdK½d�; 2G½d�Þ 
 dK½d�N1 þ 2G½d�N2; N1 ¼ d � d=d; N2 ¼ I�N1 ð2:2Þ
K½d� and G½d� are the bulk and shear moduli, respectively; d and I are the unit second-order and fourth-order

tensors. The interrelations among the planar and three-dimensional moduli can be found, e.g. in Torquato

(2002a). For example, for plane strain G½2� ¼ G½3�, K½2� ¼ K½3� þ G½3�=3, E½2� ¼ E½3�=ð1þ m½3�Þð1� m½3�Þ,
m½2� ¼ m½3�=ð1� m½3�Þ and for plane stress G½2� ¼ G½3�, K½2� ¼ 9K½3�G½3�=ð3K½3� þ 4G½3�Þ, E½2� ¼ E½3�, m½2� ¼ m½3� where
E and m are the Young modulus and Poisson’s ratio. The local strain and stress tensors satisfy the linearized
strain-displacement relations and the equilibrium equation, respectively. We consider a mesodomain w,
subjected to the uniform traction boundary conditions.

In the mesodomain w containing a set X ¼ ðVi ; xi;xiÞ ði ¼ 1; 2; . . .Þ of ellipsoids vi with characteristic

functions Vi , centers xi, semi-axes aji ðj ¼ 1; 2; 3Þ and an aggregate of Euler angles xi, a characteristic

function W is defined. It is assumed that all inclusions have identical mechanical and geometrical proper-

ties and are grouped into the component vð1Þ. In the matrix vð0Þ ¼ w n vð1Þ and in the inclusions vð1Þ the
tensor fðxÞðf ¼ L;M;M 
 L�1Þ is assumed to be constant: fðxÞ ¼ fð0Þ for x 2 vð0Þ and fðxÞ ¼
fð0Þ þ f1ðxÞ ¼ fð0Þ þ fð1Þ1 for x 2 vð1Þ. The upper index of the material properties tensor put in parentheses

shows the number of the respective component. The subscript 1 denotes a jump of the corresponding

quantity (e.g. of the material tensor). The phases are perfectly bonded.
For random structure composites, we introduce a conditional probability density uðvm; xmjvi; xiÞ, which

describes the probability density of finding the mth inclusion in the domain vm with the center xm, the

inclusions in the domains vi with the centers xi 6¼ xm being treated as fixed. We will consider statistically

homogeneous media, when all the random quantities under discussion are statistically homogeneous and,

hence, the ensemble averaging could be replaced by volume averaging
hð�Þi ¼ �w�1
Z

ð�ÞW ðxÞdx; hð�ÞiðkÞ ¼ ½�vðkÞ��1
Z

ð�ÞV ðkÞðxÞdx; ð2:3Þ
where
P

V ð1Þ ¼
P

Vi , i ¼ 1; 2; . . ., and the bar appearing above the region represents its measure, e.g.
�v 
 mes v. Of course, uðvm; xmj; vi; xiÞ ¼ 0 for values of xm lying inside the ‘‘included volumes’’

[v0imðm ¼ 1; . . . ; nÞ, where v0im � vm with characteristic functions V 0
im (since inclusions cannot overlap).

uðvi; xÞ is a number density nðxÞ of inclusions in the point x and cð1Þ ¼ cð1ÞðxÞ is the concentration, i.e.

volume fraction, of the component vð1Þ in the point x : cð1ÞðxÞ ¼ hV ð1ÞiðxÞ ¼ �vinðxÞ, cð0ÞðxÞ ¼ 1� hV ð1ÞiðxÞ.
Here the notation hð�ÞiðxÞ will be used for the average taken for the ensemble of a statistically inhomo-

geneous field X ¼ ðviÞ in the point x. The notation hð�Þik denotes the average over the component

vðkÞðk ¼ 0; 1Þ. uðviÞ is a number density n of component vð1Þ 3 vi and cðkÞðk ¼ 0; 1Þ is the concentration, i.e.
volume fraction, of the component vðkÞ : cð1Þ ¼ hV ð1ÞðxÞi ¼ �vinð1Þðk ¼ 1; i ¼ 1; 2; . . .Þ, cð0Þ ¼ 1� hV i.
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Only if the pair distribution function gðxi � xmÞ 
 uðvi; xij; vm; xmÞ=nðkÞ depends on jxm � xij it is called
the radial distribution function (RDF). The RDFs estimated from experimental data utilized a digital

image processing technique to identify fiber centroids and describe the stochastic structure of the material

through estimation of the statistical parameters and functions that describe the radial fiber distribution (see
Buryachenko et al., 2003). An example of one of the micrographs for a carbon fiber-reinforced epoxy

composite ðcð1Þ ¼ 0:65Þ used to determine the experimental RDF is shown in the Fig. 1. The numerical

simulation was carried out by the modified collective rearrangement model (CRM) accompanied by the

random shaking procedure, creating the most homogeneous and mixed structures that do not depend on

the initial protocol of particle generations (see for detail Buryachenko et al., 2003).

In Fig. 2 we compare the RDF estimated from the experimental fiber centroid data with that from

numerical simulation by the CRM, as well as the RDF represented analytically by
Fig. 1.

cð1Þ ¼ 0
gðxi � xqÞ 
 Hðr � 2aÞ; ð2:4Þ
gðxi � xqÞ ¼ Hðr � 2aÞ 1

(
þ 4c

p
p

"
� 2 sin�1 r

4a

� �
� r
2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

16a2

r #
Hð4a� rÞ

)
; ð2:5Þ
where H denotes the Heaviside step function, r 
 jxi � xqj is the distance between the nonintersecting

inclusions vi and vq, and c is the area fraction of circle inclusions with the radius a. The so-called well-stirred
approximation for the RDF differs from the RDF for a Poisson distribution by the availability of ‘‘included

volume’’ with the center xi where gðxi � xqÞ 
 0. Eq. (2.5) (see Torquato and Lado, 1992; Hansen and
McDonald, 1986) takes into account a neighboring order in the distribution of the inclusions. Fig. 2 shows

a good fit between RDFs estimated from experimental data and from numerical simulation and are sub-

stantially dissimilar from the curves (2.4) and (2.5). The experimental data for a carbon fiber-reinforced

epoxy composite were obtained by averaging over ten materials specimens each of the 10 samples con-

taining around 2000 fibers (see for details Buryachenko et al., 2003). In Fig. 3 the functional dependences of

the RDF on the relative radius for four different volume concentrations are presented. As can be seen, the

experimental data is close to the numerical simulation but not close to the predictions from using Eq. (2.4)

or (2.5) as compared to the measured RDF.
Typical micrograph of fiber reinforced composite specimen used in determining experimental radial distribution function

:65.



Fig. 2. The radial distribution functions gðrÞ vs relative radius r=a estimated by the numerical simulation (solid curve), from experi-

mental data (dotted curve), by the analytical approximation (2.5) (dot-dashed curve), by the well-stirred approximation (2.4) (dashed

curve).

Fig. 3. The radial distribution functions gðrÞ vs relative radius r=a estimated by the modified CRM at c ¼ 0:60 (dashed curve), c ¼ 0:65

(dot-dashed curve), c ¼ 0:70 (dotted curve), c ¼ 0:75 (solid curve).
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3. Effective elastic properties

First, we will summarize the basic assumptions and the final formulae of the multiparticle effective field

method (MEFM) for estimation of effective elastic moduli. For a detailed discussion and numerous refe-

rences for this and related methods, the reader is referred to Buryachenko (2001).

The general integral equation is known (see for references Buryachenko, 2001)
rðxÞ ¼ hri þ
Z

Cðx� yÞ½gðyÞ � hgðyÞi�dy; ð3:1Þ
where the tensor gðxÞ ¼M1ðyÞrðyÞ is called the stress polarization tensor, and the notation Æ(Æ)æ will be used
for the statistical average. The integral operator kernel Cðx� yÞ 
 �Lð0Þ½Idðx� yÞ þ rrGðx� yÞLð0Þ� is
defined by the Green tensor G of the Lame’ equation of a homogeneous medium with an elasticity tensor

Lð0Þ : rfLð0Þ½r �GðxÞ þ ðr �GÞ>�=2g ¼ �ddðxÞ; dðxÞ is the Dirac delta function.

After conditional statistical averaging Eq. (3.1), turns into an infinite system of integral equations. In

order to close and approximately solve this system we now apply the MEFM hypotheses
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(H1) Each inclusion vi has an ellipsoidal form and is located in the field
�ri

hbr
ðyÞ 
 �rðxiÞ ðy 2 viÞ ð3:2Þ

which is homogeneous over the inclusion vi.

(H2) Each pair of the inclusions vi and vj is located in an effective field brðxÞi;j and

ðxÞi;jik ¼ h�rkiðxÞ ¼ const: ðx 2 vk; k ¼ i; jÞ: ð3:3Þ
According to hypothesis (H1) and to Eshelby’s theorem we get ðx 2 viÞ

rðxÞ ¼ B�rðxÞ; �vigiðxÞ ¼ R�rðxÞ; ð3:4Þ
where R ¼ �viM
ð1Þ
1 B, B ¼ ½IþQMð1Þ

1 ��1 and the tensor Q 
 �hCiðiÞ is associated with the well-known

Eshelby tensor S by S ¼ I�Mð0ÞQ. Hereafter gi 
 hgðxÞViðxÞiðiÞ is an average over the volume of the

inclusion vi (but not over the ensemble), hð�Þii 
 hhð�ÞiðiÞi, and the tensors
Tiðy� xiÞ ¼
�ð�viÞ�1Qi; y 2 vi;
hCðy� xÞViðxÞiðiÞ; y 62 vi;

�
; Tijðxi � xjÞ ¼ hTiðz� xiÞiðjÞ ð3:5Þ
ðz 2 vj 6¼ viÞ have analytical representations for the spherical inclusions in an isotropic matrix.

The hypotheses (H1), (H2) can be used for an approximate solution of Eq. (3.1) and subsequent esti-

mation of effective elastic moduli in the overall constitutive equation hri ¼ L�hri:
M� ¼Mð0Þ þ YRn; Y�1 ¼ I�
Z

Tiqðxi � xqÞdxq; ð3:6Þ

Tiqðxi � xqÞ 
 RinfTiqðxi � xqÞ½Zqi þ Zqq�gðrÞ � Tiðxi � xqÞg; ð3:7Þ
where r ¼ jxq � xij, and the matrix elements Zqi, Zqq are nondiagonal and diagonal elements, respectively,

of the binary interaction matrix Z for the two inclusions vq and vi with the elements of the inverse matrix
ðZ�1Þiq ¼ Idiq � ð1� diqÞRqTiqðxi � xqÞ: ð3:8Þ
Thus, the effective elastic moduli L� explicitly depend on the RDF gðrÞ and the volume concentration
c ¼ n�vi of inclusions. Neglecting the binary interaction of inclusions yields
Ziq ¼ Idiq ð3:9Þ
reduces the formula (3.7) for the effective elastic moduli to the analogous relation obtained by Mori–Ta-

naka method which is invariant to the RDF gðrÞ.
4. Statistical moments of stresses in the components

The mean field of elastic stresses inside the inclusions hrii is obtained from (3.4) and (3.6)
hrii ¼ ðMð1Þ
1 Þ�1Dr0; D ¼ R�1YR; ð4:1Þ
where the tensor D has a simple physical meaning of describing the interaction of neighboring inclusions on

the inclusion i : h�rii ¼ Dr0. The mean matrix stress follows from the relation:
hri0 ¼
1

cð0Þ
ðr0 � hrV iÞ: ð4:2Þ
The fourth-rank tensor of the second moment of stresses hr � rii averaged over the volume of the com-

ponent vðkÞ, ðk ¼ 0; . . . ;NÞ can be exactly determined by the perturbation method from the functional
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dependence of the effective complianceM�, stored energy U � and effective eigenstrains b� on the compliance

of the component vðkÞ (see for references Buryachenko, 2001)
hr � riðkÞ ¼ 1

cðkÞ
oM�

oMðkÞ r
0 � r0; ð4:3Þ
or in index form:
hrijrmniðkÞ ¼
1

cðkÞ
oM�

pqrs

oM ðkÞ
ijmn

r0
pqr

0
rs: ð4:4Þ
Relations (4.3), (4.4) have been obtained for any degree of anisotropy of M�, MðiÞði ¼ 0; 1; . . . ;NÞ. For
isotropic tensors MðiÞ ¼ ð3pðiÞ; 2qðiÞÞ 
 3pðiÞN1 þ 2qðiÞN2, ðN1 ¼ d � d=3;N2 ¼ I�N1Þ, we have
hr2
0i

ðkÞ ¼ 1

9cðkÞ
oM�

pqrs

opðkÞ
r0
pqr

0
rs; hssiðkÞ ¼ 1

2cðkÞ
oM�

pqrs

oqðkÞ
r0
pqr

0
rs; ð4:5Þ
where r0 
 dr=3, s ¼ N2r. Eq. (4.5) are reduced to the results found by Bobeth and Diener (1986) for

macroisotropic composites.

The stress in the vicinity of the inhomogeneities vi in the matrix r�
i ðnÞ is given by the formula
r�
i ðnÞ ¼ BðnÞrþ

i ðxÞ; ð4:6Þ
where r�
i ðnÞ and rþ

i ðxÞ are the limiting stress outside and inside, respectively near the inclusion boundary

ovi : r�
i ðnÞ ¼ lim rðyÞ, rþ

i ¼ lim rðzÞ, y! x, z! x, y 2 v0, z 2 vi, x 2 ovi, n ? ovi; n is the unit outward
normal vector on ovi. The relation (4.6) is valid for any geometric form of the inclusion vi. The tensor BðnÞ
only depends on elastic properties of contacted materials and on the direction of the normal n:
BðnÞ ¼ L�½IþUðnÞ�ðLþ � L�Þ�Mþ; ð4:7Þ

where UðnÞ�klmn ¼ ½nkGðnÞ�lmnn�ðklÞðmnÞ, and the matrix GðnÞ� ¼ ½LðnÞ���1 is the inverse of the matrix

LðnÞ� ¼ L�n� n. Here the symbol + and ) relate to the different boundary sides. In particular for an

isotropic medium with the elastic modulus (2.2) an inversion of the matrix LðnÞ may be simplified and we

obtain
LðnÞkl ¼ ldkl þ k
�

þ l
3

�
nknl; GðnÞkl ¼ l�1 dkl



� 2k þ l
3k þ 4l

nknl

�
; ð4:8Þ

UðnÞklmn ¼
1

2l
Eklmn



� 3k � 2l
3k þ 4l

nknlnmnn

�
: ð4:9Þ
Substitution of Eq. (4.1) into Eq. (4.6) leads to the estimation of statistical averages of stresses in the matrix

in the vicinity of inclusions at a point x 2 ovi
hr�
i ðnÞix ¼ BðnÞBDhri: ð4:10Þ
Moreover, Buryachenko (2001) has obtained the estimation of the second moment of these stresses
hr�
i ðnÞ � r�

i ðnÞix ¼ ½B�perðnÞ � B�perðnÞ�hri � hri; ð4:11Þ
where one introduced the interface stress concentrator factor
½B�perðnÞ � B�perðnÞ� ¼ 1

cðkÞ
½BðnÞ � BðnÞ� oM

�

oMðkÞ : ð4:12Þ
Neglecting of stress fluctuations in the fibers hr � rið1Þ 
 hrið1Þ � hrið1Þ leads to the simplification of

Eq. (4.11)
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½B�perðnÞ � B�perðnÞ� ¼ BðnÞBD� BðnÞBD: ð4:13Þ

The second moment of stresses can be estimated not just by the perturbation method (4.3), but also by the

method of integral equations
hr � rii ¼ hrii � hrii þ
Z

½BTipðxi � xpÞhgip�vp� � ½BTipðxi � xpÞhgip�vq� � uðvp; xpj; vi; xiÞdxp: ð4:14Þ
It was demonstrated (see for references Buryachenko, 2001) that both Eqs. (4.3) and (4.14) lead to similar
results. Then the second moment of interface stresses can be presented in the form (4.11)
hr�
i ðnÞ � r�

i ðnÞix ¼ ½B�intðnÞ � B�intðnÞ�hri � hri; ð4:15Þ
where
½B�intðnÞ � B�intðnÞ�

¼ BðnÞBD� BðnÞBDþ
Z
BðnÞBTipðxi � xpÞR� BðnÞBTipðxi � xpÞRuðvp; xpj; vi; xiÞdxp: ð4:16Þ
The representations (4.15) and (4.16) were obtained with additional simplifying assumptions for the

hypothesis (H1) and (H2) which are used for the concrete estimation of the second moment of stresses by

the perturbation method (4.11) and (4.12). More accurate cumbersome integral representations generalizing

Eq. (4.16) were obtained by Buryachenko and Rammerstorfer (1998).
5. Effective failure envelope

5.1. Local failure envelope

The failure analysis of composite materials considers the initiation and accumulation of damage oc-

curing in each phase of the material and involves several types of local degradation processes including

matrix microcracking (type I), interfacial debonding (type II), and fiber breakages (type III), etc. Generally,

these failure mechanisms may initiate concurrently in an early loading stage and progressively accumulate

inside the materials (see for references and detail Kutlu and Chang, 1995; Meraghni et al., 1996; Reddy,

1994; Desrumaux et al., 2001).
The first type of damage processes are those that relate to matrix degradation. They include matrix

microcracking and pseudo-delamination. The second type of degradation models describe interfacial

decohesion and related mechanisms, such as fiber matrix friction and fiber pull-out processes. Let us assume

that the well-known tensor-polynomial strength criterion by Tsai and Wu (1971) describes the initiation of

failure mechanisms of the types I and III for each component, i.e. the equivalent stress is given by
PðiÞðrÞ ¼ P1ðiÞr þ P2ðiÞðr � rÞ þ P3ðiÞðr � r � rÞ þ � � � ¼ 1; ð5:1Þ
where i ¼ 0; 1; . . ., and the second-, fourth- and sixth-rank tensors of strength P1, P2, P3 are expressed

through technical strength parameters for different classes of material symmetry (Theocaris, 1991; Zhiging

and Tennysin, 1989). It should be mentioned that in the Section 5.1, the tensor r ¼ rðxÞ stands the local
stresses in the composite material. The criterion (5.1) includes the Von Mises equivalent stress criterion

ðr2
y ¼ const:Þ
PðrÞ ¼ 1

2r2
y

½ðr11 � r22Þ2 þ ðr22 � r33Þ2 þ ðr11 � r33Þ2� þ 3½ðr12Þ2 þ ðr13Þ2 þ ðr23Þ2� ¼ 1: ð5:2Þ
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The modeling of global composite behavior necessarily requires the consideration of interface degra-

dation in addition to the matrix and fiber phase degradation (5.1). This requires not only the calculation of

the stress at the interface, but equally the identification and the application of a local failure criterion. In a

similar manner with Eq. (5.1) we can present a tensor-polynomial failure criterion for the interface failure
initiation
PðiÞ
a ðn; rÞ ¼ P1ðiÞ

a ðnÞr�ðnÞ þ P2ðiÞ
a ðnÞ½r�ðnÞ � r�ðnÞ� þ � � � ¼ 1; ð5:3Þ
where r�ðnÞ is the limiting stresses within the matrix near the inclusion boundary x 2 ovi with the unit
outward normal vector n. Generally speaking adhesion strength parameters P1ðiÞ

a ðnÞ, P2ðiÞ
a ðnÞ, P3ðiÞ

a ðnÞ,
which convey the normal and the shear debonding at the interface between the matrix and the fibers, differ

from P1ðiÞ, P2ðiÞ, P3ðiÞ.

We will present now popular local criteria that convey the normal and the shear debonding at the

interface between the matrix and the fibers. Determination of the failure characteristics of the interface is

carried out through a mechanical characterization of the interfacial resistance by means of specific tests

such as fiber pull-out, fiber push-out, etc. The interface stresses r�
n 
 r�ðnÞn can be partitioned as

r�
n ¼ Nnr�ðnÞ þ Tnr�ðnÞ, where Nn and Tn are the three-rank functions of the normal n such that
N n
ikl ¼ ninknl; T nikl ¼

1

2
ðdiknl þ dilnkÞ � ninknl; ð5:4Þ
where the tensors N n
ikl and T nikl symmetrical under the interchanges k $ l generate the normal r�

n ¼ Nnr�ðnÞ
and tangential components r�

s ¼ Tnr�ðnÞ of the traction r�n with the magnitudes rn 
 kr�
n k ¼ r�

klnknl and

rs 
 kr�
s k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�
klr

�
kl � ðrnÞ2

q
, respectively.

In a simple maximum stress criterion, the normal rn and tangential rs components are compared to

maximum values rmax
n and rmax

s characterizing the interface, and the failure tensors P2ðiÞ
a ðnÞ have a form
�P2ðiÞ
a ðnÞ ¼ max

kNnr�ðnÞk
rmax
n

;
kTnr�ðnÞk

rmax
s

� �
¼ max

rn

rmax
n

;
rs

rmax
s

� �
¼ 1: ð5:5Þ
Other type of criteria taking into account the friction problem were considered by a number of authors (see

for references Mura et al., 1996). The Coulomb form of the criterion (see Arnould, 1982) permits the

introduction of the friction coefficient at the interface by the use of a linear combination between the
normal and the shear interface stresses
�P2ðiÞ
a ðnÞ ¼ kNnr�ðnÞkj

rmax
n

þ kTnr�ðnÞk
rmax

s

¼ 1: ð5:6Þ
Logical generalization of tensor-polynomial criteria (5.1) to the interface failure initiation was proposed by

Sun and Zhou (1988) (see also Kwon and Eren, 2000) for the cylindrical fibers, which in our more general

notations has a form
P̂2ðiÞ
a ðnÞ ¼ ðNnr�ðnÞÞðNnr�ðnÞÞ

ðrmax
n Þ2

þ ðTnr�ðnÞÞðTnr�ðnÞÞ
ðrmax

s Þ2
¼ 1: ð5:7Þ
The criterion (5.7) can be recast in the tensor-polynomial form (5.3) with the tensors P2ðiÞ
a ðnÞ 
 0 and
P2ðiÞ
ajijklðnÞ ¼

1

ðrmax
n Þ2

"
� 1

ðrmax
s Þ2

#
ninjnknl þ

1

4ðrmax
s Þ2

ðdiknjl þ dilnjk þ djlnik þ djknilÞ: ð5:8Þ
Because the criteria (5.5)–(5.7) should predict the identical stresses of the failure initiation at the pure local

normal and shear stresses then the empirical interfacial strengths corresponding to tension and shear should
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be the same in the criteria (5.5)–(5.7), and, therefore, the failure envelope (5.7) is inserted between the

failure surfaces (5.5) and (5.6)
�P2ðiÞ
a ðnÞ < P̂2ðiÞ

a ðnÞ < �P2ðiÞ
a ðnÞ; ð5:9Þ
where the equalities
�P2ðiÞ
a ðnÞ ¼ P̂2ðiÞ

a ðnÞ ¼ �P2ðiÞ
a ðnÞ ð5:10Þ
in general hold just for the normal n with either the pure normal or pure tangential local loading
r�ðnÞ 
 Nnr�ðnÞ or r�ðnÞ 
 Tnr�ðnÞ: ð5:11Þ
The equalities also hold in some particular cases of correlations between the elastic and strength properties

of constitutives. For example, the equalities (5.10) are valid for any n for the limiting type of soft fibers

(hole, Lð1Þ 
 0) when r�
n 
 0 and the interface failure is degenerated into the failure of the matrix in the

vicinity of the interface. In another limiting case of perfect sliding rmax
s ¼ 0 (see for references Mura et al.,

1996) the equality is also valid for any n. Moreover, the last statement also holds if under the failure ini-

tiation one understands the normal debonding ðuþ � u�Þn > 0.

It should be mentioned that the transverse strength of the reinforced fiber is usually significantly higher

than that of the matrix. The popular assumption is that the strengths of the interface and the matrix are

equal (i.e. the bonding between fiber and matrix is assumed to be perfect, see e.g. Ghassemieh and Nassehi,

2001). As an approximation, rmax
s is also taken to be a half of rmax

n as usually assumed in a homogeneous

isotropic material (see e.g. Kwon and Eren, 2000). In light of the heuristic level of justification, the
importance of the fundamental experimental work by Tandon et al. (in press) can scarcely be exaggerated.

They have used the single-fiber cruciform test to characterize the initiation of fiber-matrix interface failure

in a model composite with the interface subjected to a combined state of transverse and shear stress at a

location away from a crack tip or free edge. The elimination of the free-edge effect that requires modeling of

a stress singularity, was accomplished by utilizing a cruciform specimen geometry with the arms containing

the embedded fiber inclined at the different angles with respect to unit axial tension. The ratio of the normal

and shear loading at the interface was governed by the amount of off-axis angle the fiber made with the

loading direction.

5.2. Effective failure envelope

A common way to produce an effective failure envelope for the composite materials is substitution of the

component average stress values into the formula (5.1) (Arsenault and Taya, 1987; Reifsnider and Gao,

1991) ði ¼ 0; 1; . . .Þ
P�ðrÞ ¼ max
i

½P1ðiÞhrii þ P2ðiÞðhrii � hriiÞ þ P3ðiÞðhrii � hrii � hriiÞ þ � � �� ¼ 1: ð5:12Þ
As this takes place, the strength criteria in the formula (5.12) brings us to physically inconsistent results,

which will be shown later.

It is believed that the following definition of effective strength surface based on fewer assumptions is
more correct (see e.g. Buryachenko, 2001; Ponte Casta~neda and Suquet, 1998)
P�ðrÞ ¼ max
i

½P2ðiÞhrii þ P4ðiÞhr � rii þ P6ðiÞhr � r � rii þ � � �� ¼ 1; ð5:13Þ
where the estimations of average stress moments of different orders hrii, hr � rii, hr � r � riiði ¼ 0; 1; . . .Þ
can be found by the use of the relevant formulae of Section 4.

Let us show the physical consistency of the effective strength criterion (5.13) (in contrast to (5.12)). In

fact, let us consider a two-component isotropic composite with isotropic phases. In this case one may
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observe that symmetry requires that average stresses inside both components will be hydrostator, one

hrkli1 
 hrkli0ð1� cÞ=c 
 r0
11dkl; in so doing the microstructure of and the method of calculation of average

stresses inside the components (for example (4.1) or any other formula) influence the value of scalar r0
11, but

have no effect on the tensor structure of the fields hri0, hri1. Then the composite strength is dictated by the
strength of the component which is to be found under conditions of hydrostatic tension and is not

determined by the strength of second component. If the strength of the second component falls far short of

the strength of the first one, we will obtain an improper prediction of composite strength. In fact, according

to (4.5) and (4.16), the average values of second deviator invariant inside each component

hssii 6¼ 0ðskl 
 rkl � rnndkl=3; i ¼ 0; 1; . . .Þ. Therefore the composite strength is defined by the strength of

second more weak component at the cost of the fluctuations of the stress deviator.

If the possibility of interfacial fracture is taken into account, the macrostrength criterion can be ex-

pressed in the following form ði ¼ 0; 1; . . .Þ
P�
aðrÞ ¼ max P�ðhriÞ;max

i
max
n

P1ðiÞ
a ðnÞhr�ðnÞix

��
þ P2ðiÞ

a ðnÞhr�ðnÞ � r�ðnÞix þ � � �
��

¼ 1; ð5:14Þ
where hr�ðnÞix, hr�ðnÞ � r�ðnÞix, and are the statistical moments of limiting stresses within the matrix near
the inclusion boundary x 2 ovi with the unit outward normal vector n (4.10) and (4.11).

In particular, exploring the local failure envelope (5.7) yields the effective failure criterion
P�
aðrÞ ¼ max P�ðhriÞ;max

n

NnB�perðnÞ �NnB�perðnÞ
ðrmax

n Þ2

"(
þ T

nB�perðnÞ � TnB�perðnÞ
ðrmax

s Þ2

#
hri � hri

)
:

ð5:15Þ
6. Numerical results

This section attempts to quantitatively investigate the performance of the present approach to the failure

analysis of fiber composites. The results are directly compared with solutions extracted from simplified

assumptions (such as Mori–Tanaka approach as well as hypothesis of a homogeneity of stresses in the

constituents) and they are presented in order to place the advantages and limitations of the refined ap-
proach in evidence.

At first, in order to demonstrate the comparison of the available experimental data with the prediction

capability of the proposed method, we will consider the estimation of the effective elastic moduli L� (3.8).

Assume the matrix is epoxy resin (kð0Þ ¼ 4:27 GPa and lð0Þ ¼ 1:53 GPa) which contains circular glass fibers
that are all identical (kð1Þ ¼ 50:89 GPa and lð1Þ ¼ 35:04 GPa). Four different radial distribution functions

for the inclusions will be examined (see Torquato and Lado, 1992; Hansen and McDonald, 1986). The

effective shear moduli l� (GPa) for composite materials with the mentioned elastic properties of constit-

uents and the different RDF are presented in Fig. 4. As can be seen, the use of the approach (3.7) based on
the quasi-crystalline approximation (3.9) (also called Mori–Tanaka (MT) approach) leads to an underes-

timate of the effective shear modulus by 1.85 times for c ¼ 0:7 compared with the experimental data. Much

better approximations are given by the MEFM (3.6)–(3.8) which shows good agreement with the experi-

mental data provided by Lee and Mykkanen (1987). In the MEFM model, the best fit is obtained using the

RDF simulated by the modified CRM.

For failure analysis, let us consider an isotropic composite made from the epoxy matrix and SCS-0 fi-

bers. Both components are described by isotropic elastic properties (2.2) with the mechanical constants as

usually found in the literature (see Tandon et al., in press): kð0Þ ¼ 3:82 GPa, lð0Þ ¼ 1:74 GPa, kð1Þ ¼ 190:47
GPa, lð1Þ ¼ 173:914 GPa, rmax

n ¼ 34:8 MPa, rmax
s ¼ 32:5 MPa. At first we will consider well-stirred



Fig. 5. Effective failure envelopes estimated by the different methods; dilute concentration of fibers (curve 1), the MEFM (5.15), (4.12)

with the RDF (2.5) (curve 2); the MEFM (5.15), (4.12) with the RDF (2.4) (curve 3); the MEFM (5.15), (4.13) (curve 4); Mori–Tanaka

approach (curve 5); elliptical approximation of Mori–Tanaka approach (curve 6).

Fig. 4. Variation of the effective shear modulus l� (GPa) as a function of a concentration of the inclusions c. Experimental data ð Þ
and curves calculated by Eqs. (3.6)–(3.8) and 2.5 (solid line), by (3.6)–(3.8) with the RDF simulated by the modified CRM (dot-dashed

line), by (3.6)–(3.8) and 2.4 (dashed curve), and by the Mori–Tanaka method (dotted line).
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approximation of the RDF (2.4). In general, interface failure occurs much more easily under a tensile
normal than a compressive normal stress. That is, the normal strength rmax

n is much greater for compression

than for tension. As a result, interface failure under a compressive normal stress will not be considered in

this paper. In Fig. 5 the failure envelopes are plotted in the first quadrant of a coordinates system

X ¼ hr11iP 0 and Y ¼ hr12iP 0. The non elliptical curve 1 corresponds to the dilute concentration of

fibers cð1Þ � 1.

The curves 2 and 3 were estimated by the MEFM method (5.15), (4.12) with the RDF (2.5) and (2.4),

respectively. Neglect of stress fluctuation (4.13) transforms the curve 3 into the curve 4. Ignoring of the

binary interaction of fibers (3.9) automatically leads to the neglect of stress fluctuations (4.13) and tends to
increase of the failure prediction as described by the curve 5. It should be mentioned that all curves 1–5 are

not elliptical in the global coordinate system of macrostresses hri (and, therefore, cannot be described by

the quadratic Tsai and Wu, 1971 criterion) although the failure envelope (5.7) is described by a quadratic

function of the traction hr�
n ii in the local coordinate system connected with the fiber surface. The non

elliptical shape of the effective failure envelope is demonstrated by the comparison of the curve 5 with the
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elliptical curve 6 with the same semi-axes as the curve 5. It is interesting that the non elliptical shape of the

effective limiting surface for the porous materials was demonstrated by Buryachenko (2001) in the related

problem of onset of yielding at the porous surface.

The popular engineering simplification is based on the neglect of shearing failure in comparison with the
failure initiated by the normal component of the traction r�

n . That is equivalent to the assumption
Fig. 6.

the rea

(dotted
rmax
s ¼ 1 ð6:1Þ
the error of which we will estimate now by the example of the comparison of the curves 2 and 4 in Fig. 5
with the corresponding curves of effective failure envelopes plotted in the framework of the assumption

(6.1). As can be seen in Fig. 6, the significant differences of effective failure envelopes estimated for the real

failure parameters rmax
s and rmax

n as well as for the assumed one (6.1) are observed just at the small values

r11. In the case of the well-stirred RDF (2.4) accompanied by the disregard of stress fluctuations in the

fibers (4.13), the influence of the assumption (6.1) can be neglected in the area of moderate tension loading

hr11i > 0:2rmax
n .

The influence of the RDF on the effective failure envelopes will be estimated for the analytical repre-

sentations (2.4) and (2.5) as well as for the numerical simulation by the CRM accompanied by the random
shaking procedure. Only the perturbation method of estimations of the second moment of the interface

stresses (4.11) by the MEFM and the failure criterion (5.15) will be analyzed. The difference between the

estimations increasing with the rise of the fiber concentration vary from 1% till 6% at c ¼ 0:45 and 0.75,

respectively (see Fig. 7). In so doing the difference between the estimations obtained for the RDF (2.5) and

for the simulated RDF does not exceed 0.8%.

Let us compare the effective failure envelopes predicted by the use of two different methods of the

estimation of the second moments of interface stresses such as the perturbation method (4.11) and

the method of the integral equations (4.15). In both cases the RDF simulated by the CRM accompanied by
the random shaking procedure were used. As can be seen in Fig. 8, the maximum of the difference of the

effective failure envelopes does not exceed 1.7% and is reached in the area of the large values of the tension

components r11 and the large fiber concentration. This difference of the effective failure envelopes insig-

nificantly increases for an increasing elastic mismatch of the constituents. For, example the replacement of

the real SCS-0 fibers by the model rigid fibers leads to the difference of the effective failure envelopes of 1.9%

for c ¼ 0:75 and hr12i ¼ 0.
Effect of shearing stresses on effective failure envelopes. Estimation by the MEFM (5.15), (5.13), (2.5) and (5.15), (5.14), (2.4) for

l failure parameters (solid and dot-dashed curves, respectively). Analogous estimations for the assumed failure parameter (6.1)

and dashed curves, respectively).



Fig. 8. Effective failure envelopes estimated by two different method of the evaluation of the second moment of stresses (real SCS-0

fibers): (4.11) (c ¼ 0:75 and 0.45, solid and dotted curves, respectively), (4.15) (c ¼ 0:75 and 0.45, dot-dashed and dashed curves,

respectively).

Fig. 7. Effective failure envelopes estimated for the different RDF: (2.4) (c ¼ 0:75, solid curve), (2.5) (c ¼ 0:75, dotted curve), CRM

(c ¼ 0:75 and 0.45, dot-dashed and dashed curves, respectively).
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7. Concluding remarks

A detailed discussion is given on the main hypotheses as well as the limitations of the proposed esti-

mations and their possible generalizations. The main scheme as well as a brief discussion of limitations and
of possible generalization and application of the methods proposed is presented.

Since the effective properties of fiber reinforced composites are dependent on the details of the micro-

structure, the quantitative description of the microtopology is crucial in the prediction of the overall

mechanical and physical properties of these materials. In particular, micromechanical failure initiation in

aligned fiber composites is sensitive to both local and non-local fiber distribution and many studies have

shown that fracture properties of multi-phase composite materials are strongly affected by the spatial

heterogeneity of the reinforcing phases. The MEFM has been used to accurately predict the effective

properties of aligned fiber composite materials and to determine the dependence of the properties on the
radial distribution function. The RDF of unidirectional composites was estimated by the use of several

methods, including a numerical simulation exploring the collective rearrangement model with a random

shaking procedure. The numerical simulation provided good agreement to RDF estimated from experi-

mental data.
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The estimation of the second moment of stresses including the second moment of fiber/matrix interface

stresses was used in the proposed generalization of the tensor-polynomial strength criteria to the case of

fiber/matrix interface failure taking into account the binary interaction inclusions effects, that are directly

dependent on the fiber radial distribution function. This method allows one to take into account some non-
local effects of micromechanical fiber/matrix interface failure prediction. The prediction of failure initiation

envelopes for interface failure, obtained using several methods for representing the radial distribution

function, are compared and found to vary considerably based on the manner in which the RDF is

determined, on whether or not the fiber stress fluctuations are ignored, and on the binary interaction of the

fibers. The non-elliptical shape of the effective failure envelops using the proposed method is demonstrated

for the first quadrant r11 P 0, r12 P 0. The use of the developed effective failure envelopes for inhomo-

geneous microstructure can provide accurate material behavior predictions that can be realized through

realistic representation of the constituent behavior and the realistic representation of the microtopology of
the composites.

The progress in micromechanics of random structure composites is based on the methods of allowing

for the statistical mechanics of a multi-particle system considering n-point correlation functions and

direct multiparticle interaction of inhomogeneities. In so doing, the main disadvantage of the proposed

method is the use of the hypothesis (H1), which is the basic hypothesis of of a number of popular

methods of micromechanics (see for references Buryachenko, 2001). The use of this homogeneity

hypothesis �riðy ¼ const:Þ ðy 2 viÞ (3.2) leads with necessity to the conclusion of the homogeneity of stress

field inside ellipsoidal homogeneous inclusions according to the Eshelby theorem (3.4). However, mi-
cromechanical modeling and simulation of random structures are becoming more and more ambitious

due to an advantage of modern computer software and hardware (see e.g. Buryachenko, in press). From

one side, some models are developed with the aim to minimize the empirical elements and assumptions.

In many cases, the detailing of basic microscopic phenomena leads to improvements of the accuracy, and

provide the potential solution to the problems previously intractable. On the other side, there are

ambitions to solve increasingly larger systems. Such methods, usually referred to the field of computa-

tional micromechanics, are based on the wide use of MC simulation with forthcoming numerical analysis

for each random realization of multiparticle interactions of microinhomogeneities. At the present level of
computer hardware and software they are only practical for realizations containing no more then a few

thousands inhomogeneities; the effectiveness of MC method is questionable for the analysis of problems

with an a priori unknown type of the effective constitutive equation such as e.g. the nonlocal problems

for the functionally graded composites. In parallel with computational micromechanics mentioned above

the classical or analytical micromechanics (such as e.g. presented method) are usually based on such

fundamental notions as the Green function and Eshelby tensor. However, a combination of the general

anisotropy of the matrix and the general shape of randomly located inclusions with continuously variable

anisotropic properties presents an impenetrable barrier to the classical approaches using either analytical
or numerical representation for the internal (Si) and external (Ti) Eshelby tensors for inclusions. Because

of this, the combining of opportunities of computational micromechanics with basic assumptions of

analytical micromechanics is very promising. This makes possible the replacement of some analytical

solutions for single and interacting inclusions by their numerical representations with forthcoming

incorporation of results into the one from the general schemes of analytical micromechanics. The known

numerical methods have a series of advantages and disadvantages, and it is crucial for the analyst to be

aware of their range of applications. So, Buryachenko (2001) proposed to replace the approximate

analytical solution of the binary interacted inclusions described by the matrix Z (3.8) by the first-order
approximation of the solution obtained by the volume integral equation method (see for details Bury-

achenko and Pagano, in press). In the case of 2-D problems, Buryachenko and Kushch (in press) pro-

posed the scheme of incorporation of a simple and powerful tool such as Kolosov–Muskhelishvili

complex potentials method into the integral micromechanical equations of random structure composites.
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The challenge of modern micromechanics is a development of the general method incorporating the

solution for multiply interacting inhomogeneities obtained by highly accurate numerical methods into the

most general scheme of analytical micromechanics.
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